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NOTATION

a Constant of sepaatiow of partial differ-ontiMi equations
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A,, 8, C5, constants. in spherical CQO.rdInite solution
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c~j (t)Gegembaver _Aynomial
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f(r) Funtion of r

f(0) Function of 6

~ ~' Arbitrary functions in cylindrical coorinate solution
g(a), G (a)

F,4 (t). Funciou of t

g Gravitational colts{

f ~Modified Bessel funem-o,.ioatfst kind, zero order

11 .Modified Bessel function, firct kind, first order

kis Constants

K Wall Corlection factor4

K* Modified Bessel function, secoad kind, zero rder

K1  Modified Boswel function, secoad kind, first order

2 1cos2* e a2  1 ^ 2  1a
L Operator l-+ or _+--

L P2  r2 a co 2J IP2  a,2  P ,
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PS (g) Legendre polynomial

Q(r) Function of r

QG(t) Legendre function of second kind

P) 0 Spherical coordinates

R Radius of sphere

tR) Function of P,

S 00 Function of r

Sit 2' s3' 4 Expressions def~ined by Equation [431

2' S3, S' Integrals defined on page 17

t coo a

7(t) Function of 9

Oft, 46 Velocity oompomeas inside sphere in spherical. coordinates

U Uniform velocity

fr, V9  Velocity components in spherical coordinates

Vx - Velocity components in cylindrical coordinates

V M4aximum veloc-ity of parabolic velocity distribution

1, P Cylindrical coordinates

a Order of vari'ous functions

049 lo Constants defined on page 15

Y Density of external medium. Euler's constant

Yi Density of sphere

R ft
ARatio of'radii - o.,-I

Dynamic viscosity of external medium

Dynansic viscosity of fluid inside t-pSm

P Hadius of spherical. container

P ()Fuction of p

Viscosity ratio -FF

Function defined in Equation (461

t Sream function

Subscript i Rotors to qftities isside sphere



ABSTRACT

This report consider.,. the problem of steady, axial tr- o!ation of rigid
and fluid spheres in stationary ad moving V -Iscous-, inoecbefluids

bounded by an infinitely long .*yliadem. The investigation is btsed on Stokes'
approximation for the hydrodynamic equations for slow flow; thusa inertia terms
can be neglected, and the stream function satisfies a fourth-order differential
equation similar in form to the bihannonic one.

An exact solution fet the motion of rigid spheres in s-ill and moving
liquids within a cylindrical container has been obtained in ter ,.is of an infinite

,TF- of linear algebraic equations for the caefficients in the, Stoke~s stream func-

tion. It is shown that the drag of a sphere in motion within a. maving liquiii is

composed of two parts: namely, the drag due to ahe motiont o:,r aphere 11 a
still Ki-mid in-side the cylindrical tube, and the drag due to the motion of the

liquid -within the cylindrical tube past'a, stationary sphere. The drag experienced
~the rigid spheres has been determined for the two special cases over a range

of ratios of sphere-to-cylindrt diameter. It is also shown that. the first two equaa-
i of 0_-, jafinite set closely approximate the motion =an -I-ag of rigi4 spheres

over a lar~~e r*~rge of diameter ratios.

For fluid spheres (i.e., spheres which have di oJ hysical properties

thai L'.1 externai medium and are -characterized by internal motion) an approxi-
mate solution, (similar to the one for the rigid case) is obtained. The drag ex-
perienced by the fluid spheres has been computed for the two special cases
mentioned ta &eve for a range of diameter ratios.

Experimental results for the r~igid and fluid case confirm the theory. In
general, the results show that the wall effect for fluid sph-,oms is less than for
corresponding rigid. spheros. Streamuliaes and velocity,~~in for several
cases where the diameter ratio is 0.5 are compared with those, In an infinite
medim.

IKTROWUTIOM

The effect of the proximity of the container walls on the drag of moving bodies i3 Of
intwrest in many fields of physics and engineering. Examples arf f te r.ae of the falling ball
viscosimeter, and the rise of air bubbles in tubes. The purpose of 6~e present investigation
is to determine the drag of a spherical body rising or falling ih sw-'. slow mnotion (i.e., the

inertia terms io the equation of motion can be neglected) in a liquia (stationary or moving)
inside an infinitely long cylinder. Both rigid and fluid spheres (0 "__s, &;T bubbles) wre
considered.



Preimis ivestigations on the effect of the proximity of the container walls on the

drag of moving bodies have dealt with rigid spheres.0 Ladenburgi and Faxdn 2 studied the

drag of spherP3- moving in a AMtill liquid contained in an infinitely long cylinder.** Wakiya 5

and Happel and Byrne6 deterni1 ed the drag of spheres in Poisevaille flow (parabolic velocity

distribution) in a cylindrical tube. Wakiya considered the wall effect of a fixo'd rigid sphere

in Poiseujillenfow. Happel and Byrne also included the case where the rigid sphere is moving

inside the cylinder. All. used the method of reflection to obtain their solution, Starting with

the known solution for the rigid sphere in an infinite medium, a "reflection" flow is superposed

,such that the boundary conditions on the cylinder are satisfied exactly. The boundary condi-

tions on the sphere are only approximately satisfied. The drag of the spheres is obtained from

Stokes' law using the velocity of the sphere increased by the average "reflection" velocity

on the sphere. In all instances approximate expressions for the drag of the rigid spheres were

given. Cunningham, 7 Williams, a and Lee 9 considered the motion of a rigid sphere at the in-

stant it passes the center of a spherical container. Bondl 0 suggested an approximate ejs

sion for the wall effect of fluid spheres in cylinders, based on Ladonburg's results.

In the present study, two problems are considered. The first prolbletT' deals with the

,9teady, slow motion of rigid spheres along the axis of an infinitely long circular cylinder.

The boundary conditions in this case are: uniform velocity~on the surface of the sphere, zero

Velocity on the cylinder, zero velocity or parabolic -velocity distribution at infinity. The soka-

tion of the problem is effected by means of the Stokes stream function for axisymmetric flow.

The motion of the spheres in a cylinder is solved in, terms of a system of linear algebraic equa-

tions for the constants in a series expansion for the stream function. Numerical results are

obtained for the drag of the rigid pheres for diameter ratios up to 0.8. Values of wall correc-

tion factors have been computed for two special cases-: namely, (1) when the sphere is in

motion In a stationary liquid, and (2) when the liquid is in motion within the cylindrical tube

past a stationary sphere. The drag of moving spheres within a moving liquid can be obtained by

appropriate combination of these two correction factors. It is also ShDWn that the first two

equations of the infinite set closely approx. mate the drag over a large range of diameter

ratios.

The second problem deals with the motjn of fluid spheres (i.e., spheres %rhich con-

siat of a fluid that has different physical properties than the external medium, and are

*During pvU~tcatlos of this rr-pt,. & paper dealiow- with the wall effet of spheroid. has come to the attention
o( th# authos 'c 30).

**The coftesiading two~imK-4- ^'aM problem (a crculw cyliader Moviaq perakiel wit the two cotmew wails)

has be@f treated by Feat"' fcae 11aw"

l~efeveec..s aft liieI page 6S.

2



characterized by internal motion) along the Axis of a circular cylinder.* In contrast to the

r igid case, the shape of fluid bodies -Rnnot be specified beforehand. The shape is a conse-

quence of the motion such that the bou~ndary conditions axe satisfied at the body interface.

For the slow motion of a fluid body in an infinite medium, it was shown analytically by

Hadamard 12 and Rybczyi'ski I that the sphere is a possible shape for which the boundary con-

ditions (continuity of velocity and stress, no diffusion) are satisfied. Experimental evidence

by SpellIS 1 4 indicates that the spherical shape is actually attained by fluiad bodies in slow

motion. In the present analysis, a sphprical shape is assumed fornfuid bodies moving Within

a cylindrical tube, and art approximate solution (similar to the approximate solution for the

rigid case) is obtained. As before, values of will correction factors -have been computed for

the two special cases. The validity of the approximationi is confirmed by experiments with

drops moving in a still liquid. The experimental investigation shows that the shape of a fluid

body in stoiw motion inside a cylinder is not exactly spherical. The drag of such nonspherical

bodies can be evaluated from the theoretical solution if an equivalent radius based on its

volume is used, and if the diameter ratio is smaller than 0.5. In general, it is shown that the

wall effect for fluid spheres Is less than for corresponding rigid spheres. Stream functions

have been evaluated for rigid andnfuid spheres in a stationary liquid for a diameter ratio of

0.5 and are presented in the form of streamlines about the spheres.

The investigations described in this report were carried out at the David Taylor Model

Basin under NS 715-102 in. connection with a program investigating gas-bubble dynamics. The

study dealing with the motion of spher es in a still liquid was first presented in thesis form15

and subsequently in abbreviated form.'16 The results pertaining to the motion of spheres

within. a moving liquid have been presented in abbreviate form," 7

METHOD OF SOLUTION

The motions considered here are assumed to be sufficiently slow so that the Stokes

equations of motion are an accurate description of *4 lw o h tedaiymti

motion of an incotnpressible fluid, the Stokes stream function exists and satisfies a fourth-'

order differential equation. Corresponding to the two boundary shapes (cylinder and sphere),

solutions for the stream tvnction are obtained in cylindrical and spherical coordinates. In

cylindrical coordinates, the dit'erential euto o h temfnto s

*It Is known that drops ad bubbles below crtain critical sizes, depart frow being "fluid" and become "A&gi"

in~ their behaior.~ (S.., eg., the autbows' ivestigetion on the motion ot ga-% bubbls, Reference, 11.) it Is not the

purpose of the presest "Vvestigstion to deal with this transition phesoamos am to detarme the conditieins at

which transition to 1riq1dlt7" takes Place. ft is Waended to give the wall effect for those broplats or bubbles that

behlave at fluid bodies. For those behaving as rigi spbers, the wall effect for the rigid carse appies

3



Fa2 + 2  2 P)1 2
LS2  ~P 2  p dpJ

It will be s4,hownt that a solution of this equation (for the case of symmetry about the horizontal

y-a pla~ne) is:

IV C, P) 4 P (K (ap) f (a) + p2 AK' 0(ap) F(a) + pI1 (dp 9a) +P2 10 (ap) G(a-)]cosarda [21

0

ILl spherical coordinates, the stream function satisfies the differential equation

C,2 1_COs42 0 a 2  2

r ~( Cog 0)2 ' r ) 3

a solution of which is shown to be

V (r 0)u dCJ(cos 0) [A rA2+BM + C ..A+2 +D4 (41
2

w-hore Z, P; _r, 6 are coordinates,

C - is Gegenbauer polynomial,* order n, degree-%

All 9 CPO, DX, are constants,

10, 11, KO, K, are modified Bessel functions, and

f(a). F(a), g(a), G(a) aro arbitrary functions.

For the satisfaction of the boundary conditions on the cylinder walls, the cylindrical coardi~

nate solutin for the stream function is used. The expression thus obtained represents the

flow inside a circular cylinder, not as yet fully specified but satisfying the boundary condi-

tions on the cylinder. This expression is the,-, transforme6 into spherical coordinates. By

comparing terwwise the constants in the above expression with the constants in the stream

function expansion obtained directly in spherical coordinates, a relationship between the con-

stants is obtained. The boundary conditions on the sphere yield a relationship between the

'nst~rAR t thp apherica1 Coordins--nIOt 001 goltion S titttirg Cho revious relationships into

thomp obt~ained rot-i ibo lrsindarq conditions or. tthe F'phe2e, a set of linear algebraic equations

-for evaluating the constants is obtained.

OTb. fist town of thmm. oIyssmr ae .. be valwmI* Appinila A.



THE STREAM FUNCTION IN SPHERICAL COORDINATES

The Stokes stream function in spherical coordinates (Figure 1) satisfies the fourth-

order differen'tial equation (Reference 18, p. 393):

+ V-o2  (1pco:)O)] [31.ar ,2 F 2 a (Cog t9)I

A solution of the differential equation is sought in the form

W" TI + V2 [51

such that L 41  0 and L Vz = Y (i.e., L2 T2  0)

where L [, + - - and

t - cos 0.

The solution is to be single-valued and continuous in the given flow field. Assume a solution

for L 1  0 exists in product form; i.e.,

Ty (re ) - R(r) T() 16]

The second-order partial differential equation can then be v~parated into two ordinary differ-

ential equations

r2R a2 R 0 [7]

(t2 - 1) T"- a 2 T - 0 [81

where the primes denote differentiation with

respect to the argument.

The solution of Equation [71 is:

W - __I____+___2

where - +
2 2

Figure 1 - Coordinate Systems

5



The ;olution of Equation (81 is:*

rT(t)wC"(t) + c Fe (1) i;

wherp Gegenbauer function of order*, degree -. ,and

O(a- I).

Comparing the expressions tot m and., we obtain Yrn -a. Hence

IV (r, )(C 1 re+ C2 r O I C + C3'F ) (11)

The siolution of the equation L IFP2 =~ IpIi

Xssumo the particulatr solution I'p in the form Skr) T(t), hence

r 2 vp- &a m- ) S -r 2 (c I.ra+ C 2 r [_0+)

and
S(7) z 2 (ca+. 5  ~ l

ThePrefore

'P~ + C 3 C ' C+2  +4 -  e+4P-02 + C F_0+315

Summing the above solution and us~ing integer valuesl of a , the expression for the stream func-

tion for axisymmetric, slow flow in spherical coordinates becomes:

(r, (9 C-% W(A, + +B, p R+1 + C, px4 2 + D 4+)

+ [0 (A +

2

The~ _2ulo C0.(P) is give* in Reftfmeo 19, ;- 329; the secood so2ioas-

Q0_2 Q I Nbee Q (9) w L4OPuM" firnetO% Of the SWOe kind. C_%how a sinalarity ot I -I (i fh)

eacept for0e tge. Fb** simularhitw at Im~w. Wi.O owk )for all values oO.

~~~W _%uto ise -h -*+1W 0+2uiI heI

9 N IVCIO( ,1 , +OnC 4
2£
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v~r the (.P. lpr Bou 4~~ ktset1 f~mtk of 6,o fiwit kim fmvxt -..dor,-,~

A1 (a#) is* ~The mMh fr#,oiof thol~~ i~. i todr

VWe Itiri-Ar Sdohz.ied of L I 'T is SolugM ill thei from (P) h() ence

Sotuttontont IEquatioh 1:18 is, givnb

~ ( 1'[291

12 cpI 1 (o) + ,,K cw)I za.+ o a.)[SO

4Sotutom or Eqaaioll [11 4 is 45 iven by

TYA -(C3 p1f + oP,+ c PI40 + cp Q) (C~os-as M n(2

wbom. 1, 9 0, &Ud A'1 we used 'it lies of I~ (ap), J Wa (4p ( K f ;P). Siae* the
frolution bolds lcorall oitive vtlww -of a, the imts ftwm,

do K1



Thus letting c, c3 -- 9 (a), c,c 4,f 'a) c1 c t !(a), C1 C6  1 (a), c 2 c 3 --.q (a)e

c 2 c 4 -~2 (a), r2 c's G 2 (a), and r, c, F Yi, the expression for the stream function in cy-

lindrical coordinates becoms:

V~f p) , 0 t ) + . .' . - l I p 1~ ( a ) ] o s a x d a

0

J [p (a + KoF 2 (a+ si 92 -(a) + p2 1002 (a)]- sin-azda [341

0-

+ kIpT + k_2 p4 + k3 p2 z+ k 4 p 4 x+ ksz 2 + k 6 p 2 z 2 +k 7 z 3 +ksz

The terms containing ((a) and q(a) satisfy the second-ordw differential equation (L 9 - 0);

the F (a) and G(a) terms satisfy the fourth-order differential equation (L 2 V- 0). The arbitrary

functions f(a), F (a), g (a), and G(a) are evaluated from the boundary conditions of the problem.

From the relations

p dp
[35)

mp =- --

p C

the velocities in the axial and p-direction are obtained:

m4
m, J 1aKof 1(a) - (2Ko - apA1) yF (.) - a1og 1 (a) -(2 10 ,.pz 0 (a)] cos atdo

] [aKoft(a)-(2Ko -apK)F 2 ()-aIlog()-(21 +ap 1 )G (G) sin da

0

0

+ 0[aKf 2 (a) (,0 2 (i- sp I) 2 ta _4pIG 2(.)-ocos a~) 2a)siod

0-

+~ ~ ~ 7'I 12W+pK 2()+1 ,,s-oG

AV

pk



The expression for the pressure field is:

p -2 [1 J t (a) + K a sin azda

+ constant

THE MOTiON OF SPHERS IN A CYLINDRICAL TUBE

A. MAOTION IN A STATIOMARY LIQUID

1. :Riglid Spheros

a. Exect Solution. The first problem considered is the motion of a sphere within a
still liquid of finite extent, is occurs when a sphere rises or fails under the influence of

gravity. Tn this section the axial motion- of a rigid sphere inside an infinitely long cylinder
W Ill be dealt wi th.

For convenience, the coordinate origin is taken r.V doe zenter of the sphere and the

cylinder is assumed to be moving at constant velocity U in the negative x-direction (Figure 2).

The boundary conditions are-

at the cylinder walls (p b): V. T-( b'O o
p 2

at Iniity (zm~) . -; 0 [8

on the surface of the sphere (P ft):. V 0; v

The case of a sphere moving at constant velocity U is obtained hram the above by staperimpos-
iog a uni1form nlow with velocity U in the positive z-direction.

Since the str function is symmetrical about the y. a plane because of symmetry in
tie boundary conditiomi, the stream function in spherical coordinates is given by

s-2;7 )(a -2, 4,6 .

07%0 cof ft~ es 0pm 41OND' the cesew of ks phuict conmeimer (esgINectig say' WWtd effec s) is
0-mn"W" i AePmdia IL

Ii 11
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IMN can, therefore, aolve for g1 () and Go1 (4) iA term of ft (a) and F, (at)

I I (ab)-_(ab)+ 0(ab)K 2(b) () 1q,(aa.)

a ,2 (Cb) ' 10 (ab) 12 (4b)

SIf '1 (ab)K (ab) + 12 (ab)k~O(ab)
Z(4) OWN., "'. . .-:; f (a) +  -- "" ( a)

(a b)2 2  -(ab ) a P A I 1  ( ,} 1_ (ab)_ II 0(a b 11(4 4 1

vhere the fo-lowing relations for the Bessel functions have been -used:

I. (ab)K (ab) + I (ab)K°(ab) - I and 1.(ab) I= (ab)- a I1 (ab)

1ab'1 0 ab t

Let

11 (ab) KI (ab) + 10 (ab) K 2 (ab)

[1, (ab)] 2 _ -0 (ab) 12= (.ab)

S W -

3 11[431
a [I. (ab)12 _ 1 0 (ab) I (ab)

It (ab)A' 1 (ab) + 12 (ab) Ko (ab)

[I (ab)12 - t o (ab) 12 (ab)

Utitizing t. (ab) K2(ab) -12 (ab) K0 (a.!O - , we obtain
(ab)2

9'(a -r 2a S-
- = - S1 Si4] f (a) + S3 F1 (a)

1441

G I( Ud S2 f! (a) + S4 F, (a)

Thus having satisfied the boundary conditions on the cylinder walls, the stream fuaivtin

becomes

13



~p) - KIp(ap)f(a)+ P2Ko (ap)Ft (a)+ p It(ap)(Sif(a)+3F (a)]+
0 (45)

IAGjo~p)[S2f.(4)+SFa)j coo azadfa Up2

Li2

In order to transform the above expression into a form amenable to the satia!,ztion of the

boundary conditions on the sphere, let

(a)a [46]

0

The integrals p2 foq K (ap)a' cooaz do and p" K (ap)a cos azda which then result are
0o 01

evaluated in Appendix B. It is shown there that only odd powers of a for n ind even powers

of a for b are of interest here; otherwise discontinuities result at t- 0, q Thu wu obtainM

from Equation [401

o p)f p K I () (a. a + 3 a3 + a. as +.. cosazd;1

+1p 2Ko 2p) (b0 + ba 2 + b4 a4 + ) cos da 147)

C U p2

+ [p 1 (ap) g (a) +p 2 o (ap) G (a) ] cos az da + ---

The integrals containing I and 1, can be expanded into a Taylor series about the origin. The

convergence of these integrals is assured by the form of the functions g 1t(S ind C1 (4'),

A Sunction 0 (z, p) can be expanded by Taylor's theorem into

(Z, P) 0 (0,0o) + Z0 X (o, 0) + P 5 (o, o)

+--1 [82 (Op,0) + 2,zO p (0,0) + P2P (0,0)] +

1-

"""+ n! '  (o, 0) + +

6 (o,0) +., + e (oo,] ) +.,.

where ( " )af. bi--mil €oefficiett

*-i bd me eROM at we uieda .G a * 6tsdf d z -0 m-tz

14



Lf t

(T " [) t- (ap) g, (a) + to(d p) G(a)I co 0 [48]

Hence

4(0,0) -o
z

.(oo)-o ftodd
p

pp (1o,0)-j [- (a) a + 2 G (a)] da

0p4 (O.0)-.Im 10 /4. t (a) a 3 +#G1(a) all] dol[

* ((oo) Io [15/8 g1 (a) as + 1SG (a) a41 d
AP 10

etc.

(0, O) - 0 -odd

S(-1)s/2J (same as in Od) e even

0

L 0

(aa2(a)]I4 do8 imi(S fa) dis+ r S + 1)Ft(a)

m O

04- g,(a) a + 20,().d -- 1, j(s43 )sF

od

(a) +20(.1a-ds. 8 4 # 1 (4) d+j (83+24)e r, (a) do

4 Ga,.).4d. ,(.a),(,)d.

(a) a
t SO

dm -2 a)da+4f(

(S4 i 2'e 34 1F A)d



Hence

1 6 51 " p + :-Pd ' F  +  3.7 P 4

#(,p ~ 4~ T4 1 2

is thus transformed into
2 - 6 _, , - a. + - .

6 2 40 T

-b' -7-e¢ + b --- C, +...

4 1 2 43 154461 ;6P

12
2

+-22[ S,, a +asa+...)4a+ (S3 a+2S.4)Qbe  +b a+...) da++ I O r ( p s) + p 4+38+ )Since f J( a a. 4
3 

+ a  ,a ) a nd.. ) 7 4 4) (b-b 2 + b 0+ E a4+on+-[4 ]is/thusi tranod intuos:
4 401,2a2+,,o+ a +.,b ,. +V

+ , a ( 3. +. ( - A.

2

+ 1 4 . 2 + 4a(a, a + , + a + 6 4) 0 ,a2 + 2 a +

24 [11 '2 0

+ X2 138 + -S.,a SN+ - "G4 +"+.
48 2 SA



By -competinig lEquation-s [51] aind t52-11 the followifig retationsbips e obt*ad between tke

constats A., Bit CI, D4 and abx 5:

82 2 2

B4 - a 6 4

0 2 bbox.

D 1-2

*4 5

+

A - +-
£5

84
c2 = T

C (_1)2 (-)(n1

To facilitate the evaluastiot of eand B119 lot

2 g M S-2 (eb)a &d(sb)

S3 (Sb)*

S4 ~~v~ d(ah)

f7



This results in

sS s x+2 S, ,>.5
84 S 4 2 4

1 -

B m  -+I --- + 3 -- -- + . . a+ ..

s-2) s," n+'-

+0 - - --  ------ + b .(*+ + - + -
001 3 4 2A+

b-- Sm+1 *+n-
2 -2 2a, -be. +ha3 + +b Lai

s n 2  S45  sx4m-2
+- + b2 -+.. + * +-

bn+1 63+5-1

A nmumber of the S~' and S * integrals have been eval-mated in Appendix C and are tabulated

in Table 8. Thus we obtain

6655W07 A3  15.So"X 5  4.4065A 4.7618 X3 l
A a- a-b_*O

2t 3  3ft3

R RS3 R
A4 ,, 4"765 )S al +4 T95 aX +.. + 1 75 3bo0+ ' M b2 +..

Rs  R7  1 a  R $

(a -2_____! (-4YV*8 Arn+a

""-'2 A7- L I'---.

1. .(12 L3-

25 F
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From the boundary conditioss on th. sphere (Equation [881) and the ofthogonlity relations

off Gegoev'amer and Legendre polynomials, we obtain

from=v -0: An RO- 2 + Ba + Cm R - + - = 0

1[541

ft3++ from ve0 : mA R" - +) R - (a-- D) B,0 + R -

Solving for A. and Ce we obtain

R2*-1 2 R,-1

C - - B - D
2 2

Substituting the expressions for A, B, C*,' D as given in Equations -[53 into [551, an

infinite set of linear algebraic equations is obtained for determininlg the constants al, a3,...
, "d! bo , alt..

from A2:

60 b2 @3

'R(2.fw (- -40.861s)+... -+ !w5.7 ,) +- (-15.38 X) +...

R X2 R s \2R

-~ ff-65W +-(3 -15304)(1S+' MOM +~ (-O56iA.+ 0

R (2 JRf3  ft5

from 4 : [sel

-(-_.0705 :) + ( M + .. 2 .(-47 A+ (542 -950 + 0

R P 3 (L1R3#from C4

±4

60 &2 &1 93

0 
7R3

(6......... +2.... ...-...
7-

(a%
+4

2.nt V . Aw

I=



from A:

(qtf-1)f! -'u2 +n (n -l)! 6n 1 sI*+m-' ± L. s:s- 2

+n0- (2n+ 1)+n! a,-,I *...LS +-1
+ 4 (R (- )! 4 (n -01 (2i-3) 2 j

a

n+

from C:

-2 (2a-I)n(a-1)n! b4 S4  x~

4 ,i4(2n41) Rnn,2,, Rn'I (n-2)! (2n+ 1)

(2n-Dn! an3 1  a___on An+in+ 2 0o
+ - - -

4 _R4+1 ,fR^+2 (n-2)!(2n+1)

The constants a.- and b. can b~e evaluated numerically to any degree of accuracy -by increasing

the number of equations utilized.

The solution for the stream~ function in spherical coordinates for flow about a sphere

in an infinitely long cylinder is thus given by Equation [39] with the constants 4, Ba~, CIS,

,and D,, given in Equations [53). UR-ing ten equations of the algebraic set (Equations (561), a

sufficient number of the constants a. and b.was determined for a diameter ratio of 0.5.

Streamlines were then evaluated from Equafion [391. They ame shown in Figures 3 and 4.

Figure 3 show's the relative motion about the sphere; i.e., the streamlines as they appear to

an obiserver moving, with the sphere. Figure 4 shows the absolute motion about the sphere;

i.e., the streamlines as they appear to an observer rueod in space. 'Velocity distributions

at. the plane of symmetry and streaMlines for the mnotion of a corresponding sphere In an infi-

'te medium have been included in both figumms.*

*1nw exprosiou for the stes tumctlas for the intion ol uigid @ph@ s Is an ikitot medium is:

(r, WsU U) vetive motio

si'* aIA -- -Uf e si motion
2 (2 ,2 /

20I
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002
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Sphere in Circular CylindwrDio-neter Ratio-, 0.5 Sphere in infinite -Mediuam

Figure a - Streamlines and VeooAty Distribution forlftigid Sphorws

(Exact Solution); Relative Motion

The drag experienced by moving spheres ean be evaluated by Integrating the forces

mt*in over the surface of the sphere. Thus

Drag fp,,osift 0 .f,, coos0 40 (571

,where pr is the tangential stress,

Pr is the normal stress, and:
ds is the Ifxce element.

w"The drag of the sphote can be-obtained from the stream function and is shown in. ijndix D

-o be equal to

Drag - 4g 2  0~ [8

i.e. t. ft, 'wag. is proportional to the coefficient 1)o h temfnto xaSion. Doi ig

z wallef z:cton factor (K,) as the ratio of the drag of the sphere in the bovued mediUm to

21



U -01

Son*e in Circular 4Ityhnr, Disawter Ratio' 0.5 bikoYOV

Figure 4 - Streamlines ad Velocity Distribution for Rigid Spheres
(FxAct Solution); Abolute Motion

that in v ainfinite medium, the drag can be expmeasWda

Also, combinting Equa~ions 15SI ad (591, we obtai s expression for the wall correction

factor in terms of the coeffici eat &o*
4,T-2# 2v

I Il

Wall conrecion factors for rigi~d spheres movinig is a still liquid melid. as isfluleely loqg cyl-
inder haye boo. determised by awmerically soviag doe algebraic *ystem (Eqvatom (561) for

the coefficiomi, 6 over a large map~ of diaeter rafies. The ausiber of equatioas of ase also-

"raf system~ ued was Iscressed at most Ip f,- .jM) V- "0, 061y very simall cheages Isthe

value of#)* Were Obtained. The c6Opted wil ww COs fv~rs We showII Is Figue S sa
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TABLE I

Wall Correction Factors (K1) !or Rigid Spheres Moving in Still Liquid
Inside a Cylindrical Tube

Ec Approximate Thery
.Exact Theory (Equation t62]) Percent Diffetece

0.0 1.000 1.000 0.00
0.1 1.63 1.263 0.00

0.2 1.680 1.680 0.00
0,3 2.371 2.370 - 0.04

0.4 315. 3.58? - 0.39
0.5 5.970 5,871 -1.66

0.6 11.135 10.59-1 - 4.89

0.7 24.955 21406 -14.22
0.8 73.555 48,985 -33.40

Table 1. Previous theoretical'results by Ladenburg and Faxdn are included in rigure 5. Ex.

perimental data at very low Reynolds numbers, taken from Peferences 9, 2"), 23, and 9A. are

also show for comparison. Only experimental data at Reynolds number (based on diazioter)

less than two were included. The actual extent of the Reynolds number range over which the

theoretical solutions for the drag of the spheres are valid could not be determined from avail-

able experimental data. It is estimated, however, that the theoretical solutions are reieble

for Reynolds numbers up to two.

b. Approximmete Soletie. A very good approximation for the drag of the rigid spheres

can be obtained by retaining only the first two equations of the infinite set (Equation [561])

and considering only the constants bo and a,. For the constant b0 we ther obtain

-0 - 1A-0.75s57 []
R 2 1 - 2. 1050 A + 2.0865 A3 - 1.7068 As + O.72603 A

Using the definiion of K, (Equation [6013, the wall correction facto for rigid spheres iu a

still liquid within an infinitely long cylinder is then gives in the convenient form:

-1.WS 5 i.T08

1 -2.010: 7s + .0842 1 - . T s + O, T"OSAG

*esbIg II I IIes .I24

•S ol"d. Kw 1,3+2.4 KA 1

I -1O4X+ 2.0ti 1 -&sf

24



-Wall correctiont fiozorA giveti by Equation (691 have been evaluVated and we included in Fig.

ore 5. In Table 1, watl correctioft factors for the exact an~d approximate solution awe listed for

compaiom It is seen that the wall corwetion factxs for rigid spheres is well approximated

by Equation [621 up to diameter ratios of 0.6.
In this ativwoximation the stream function becomes

where

82 =ai 84f 861 wa0

02 . b 0 V 0,D

60 al
.42 -4.40M06- A,- 6."W57 X3 +!U

Sr 2 2 J4~
C2 .311 -2.76 RA

4 2

wiit.2h tR1sh

bU
0-jL



0 2 0~I~

Sphere in circular CylindevDIumstei Ratio-. 0.S C0wi.s. VI.0cty Distributi..

Figure 6 - Stzeanffiaes and Velocity Distribution fcr Ri 'd Spheres
(Approximate Solution); Relative 40tioe

2. Flidi Spheres

In this section -the axial motion of a fluid body *Inside- a infiitely l0ng cylisder wil iW

ConsideredI. For the motion~ in a i*Afluikt* Medium, ik hasr been shows thaite "per Br'bfo tw

a possible surface at which &Halluday oNditiona gi s"tirfjlmd.12-' It Witt be Mbow* kW*

that tke assumption of W spherical shape does lot ee" to in eXat solutios for the =odon of

a fluid body Inside a tylisdor. flowoeu' all velocity sa stress esmpWV'ta mWisias &rM thek

first group of terms 0(Ow SUMM trea uCton (the C;% terms) A*o saf the bftdary cotioW
ona a ptowre nvcei fOW tie se ,Whe t"e C;% game ame U0 ius awt In doedVSKta tAe
umotios Owe spheri-Cal -shap will be a Very goad apM6iMut. A& AWOSIWO #01WIOO iilKs

to the one for the rigi~d Ca*-# wil tAu be obtaia*d. met ' elifty of thit Sso is carfkMej

by pri.as

e. Theeretimi SOIGOW As t1 1 41 W the m6 or a the .ufu. yster iii
takesna OW teW Oft~ of 1 lud Wt. lub hivy mtup"04 -ow



at the cylinder wajis (p 6) VX-U t. o

at itiflnity (z V ±V) n- o
at the surface of the fluid body: tell

Equality of tangentild velocities,

Normal velocities vanish (i.e., no diffusion),

Equality of tangential and normal forces.

F~or a spherical surface (P - R), the 'boundary conditions of Equatio'. jA tI, he fr'tii:1

2) us, .0

3) t'r no 16 ,

4) (pro), Mpro

)) + y g R cos 08- .g Roe4

where is the radial velocity inside sphere,

u~is the tange~ntial velocity inside sphere, and

i refers to quantitio- inside sphere.

The~ stream function in the exterior of the sphere is P~ n ~it.

"+2
0.0 A*r Rn- C e~ X4.. 1391

27

in the interior of the sphere by

V Fr, ) C;%(cos 0) (En ?A + p ni+2,.- ) ~~

2

From the above expressions'for the stream function :o ~ ~v Of Velocitv cfv-

ponents (Equations (18]) and stress comnponents (Equatioui 11 and oba:

*The ygfI coo9a, I y g coom0tte take the difftrnce it. i &k.1ta4 *4 Tlas. 'vURI. (304
F1 -we 7.)

*07he constats associate with the I/rot- and It.' trms It tV W~Ab

obtained at the totter oi the sphoe.

27
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- ~ K1 (apla~aCOSU 4 4j p K(.4P& COSE aada

00

2Upa

2

<In spherical coordinates it is given by

(f, )C 2 (COS +Bt2  02  r 2 Dr+4(O A4P 4'j

Fromt the boundary conditions on the sphere (Equation, [681, it 2)

5 1 1 3 1 1 2/3e
A2  7~--B -D--2 2 ft - f -

2 1- 1+/R 1-

CR5 2~ R3t 1-v

[701

E2 228 2D2:~ -

R2

external viscosity
where a

internal viscosity

eubstituti-ng expressions Wo A2 C2, 041 and 0P (Eqwvio. [481) into E4utioon [701, two alge-

lzraie equations for a &ad b amc obtained

*A Wpclt of . qNMtf*R it SM614 OW 0 400W , 100u00
4

A2+ 2 -0-

E2-4

use~ Stm "~s ofwePWW0



b0 ~~~ f 2/. 40866X) ( +14
.4-. - - 6.55507 ;j

R Im r 2 1/

1-0 2 1 - o -1i7.873~ -0

From the above equations bo, for example, becomes

3 1 2/3c

iio

I0.75&57 AS-

1 + 2/3 a

1X.5 .+ 2.0865 - -1.768 - -+0.72603 - X6-
+1+0 + r i+

*The constants bo and a1, as determined, (rom Equation (711, when substituted iM Equatioj ($31
will yield the ixterior stream function for the fluid -%phere. In the interior of the Sphere the

stlearn function Can bO given as (utilizing velocity Continuity):

y 1 ,~CL 2 Wu~Jdr /2 (cos0) (A 4 +r4 Cl+. []

Streamlines for the iaterior and exterior of the fluid sphere were evaluated from Equationr (7.3]

and (631 (with coefficients b-0 and, al determined from Equation, [71) for thjO Case of an i-nfintite

viscosity ratio and a diameter ratio 0 0.5. They are shown in, Figures 9, and ). F igure 8

shows the relative motion; Figure 9 gives the absolute motion. Velocity di tributions at the

plane of syinmetcy and -streamlines5 for the motion of & corresponding sphere 1% an Infinite

medium have been, included in hBth figures.*

Using Equations [58) and [721, we obtain

1+ 2/35
Drag .6wa KI

NDr.g in infinite Mediunt

*T1. stream fomtiou for the motion of fluid sphre* ip- an, infinite medium is-

si203t113 1 +23s1 192 m:% / n2 r2

[U 1+0 .+ 2 o \2
Relative 'notion

I I +214#w Or
V 0.)ftn 2  U Ua .K- rjT r ) SWia26 UP 2+ r2( 4

2 131
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Sphere .in Circular Cylindor Diameter Ratio: 0.5 Sphere in Infinite Medium

Figure 8 - Streamlines and Velocity Diribution for Fluid-Spheres; Relative Motion

where K I, Cho wall correction factor for fluid spheres moving 1-n a still liquid inside ant ifi.

nitely long cylinder, is

t\

]---5

1 -0475857

Ki W, I + 2/31 x 232/a51
I - 2.105C , + 2.085 -1.708 As 0.7,003 AG/

WallcoreCtion factres ve bn evalted from Equtio 7i aSpd me; Re ia Fi e i0.

Cwrver fo hereton facoro fluid spheres 0 (rig'd iae) 1 1 luid naid 0an ihow nf

it*o yr V, the is stion ter 9 s to I sr (62t

1-0.7585



1001 /
-02 -0 -1/ t

Cylinder

Rasc titRO-

Sphere in Circular Cylindr, Dimeter Ratio: 0.5 Infinite Mediumt

Figure 9 - Streamlines and Velocity Distribution for Fluid Spheres- Absolute Motion

b. Exp~rimentol Work. To check the validity of the theoretical solution for the drag

of fluid spheres and to Ct~atmi"~ the deviation of fluid b~des In a cylindrical container from

the spherical shape, a limited ntumber of experiments was conducted. The experimental st-ddy

consisted of determining the rate ol fall and the size of water-glycerine and Dow-Corning 200

silicone drops in caitor oil. The DC 200 corresponded to viscosity rAi6 of it, whereas the

water-glycerine mixture (about 45 percent glycerine) gave a ratio of %booL 200. Two cylindri

cal Lucite tubes were used. They were 1d.24 in. and 2.74 in. ia interal diimeter and 36 in,

and 31 in. in 1060th, respectively. The drops were geam-ated by means olt a stopcock brette,

the tip of which protrided Into thoecastor all.* -By roxvisting the stopcock, drop a differen

size wer roleased. Large drops wet" vsd to &sow*e that they behaved "s "flvid bodies."

The fall velocities o( Ow- drops were detiod by me*$# of A stop watch-1 the size# aod s1A"

*71* a* #Ua el"6111 ifta ftfld w*ka WOOpge "Oah "A* is the i~owkse0 "W O1 e4 Able8 0,U*

t *of. 11W met MW Mi *"*q% *Rhft'ib O *r how"**~ St *" t10*1t th t'.' rey "mosO
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df the drops were determined from high-speed p60tograoihs. Statinary steel spheres of various

known diameters, located at the center of the tubes, were photographed to provide scale factors

for evaluating size and shape. The temperature of the castor oil was deter -i., *t frequent
intervals, by means of an immersion thermometer. The viscosity of the liquids was measured

with an Ostwald-Fenske viscometer, and the density of the , . obtained by means of

a Westphal specific-gravity balance.

The experimental drag of the drops was deoermwined from the equilibrium condition of

the forces acting on them. Thus

Drag tt Volume y1 g - Volume y g

Weight Buoyancy

The experimentally determined drag can be compared with the theoretical one given in Equa-

tion [741. To obtain the experimental % all correction factors, the experimental drags in the

cylindrical tubes were divided by the drag of the fluid spheres in an infinite medium. For
Ef r olume \1/31

deformed drops, an equivalent radius L(o, -J was used in he computations. The

experimental correction factors thus determined are shown in Figure 10. The drops as deter-

mined from the experiments were either spheres or ellipsoids of revolution with major axes fn

tte direction of motion. The eccentricity of the drops is given in the insert of Figure 10.

The maximum Reynolds number (based on diameter) of the water-glycerine drops was 0.72;
the maximum for the DC 200 drops was 0.2. It is seen from this figure that the theoretical

solution agrees well with experimental results for diameter ratios up to about 0.5. The Aevis-

tion from the theoretical curves occurs at diameter ratio of 0.53 for the water-glycerine drops

and at a ratio of 0.65 for the DC 200 drops. Because of the limited range of the experiments,

no definite conclusion can be drawn regarding this difference. It is conceivable, however,

that the deviation from the approximate theory is a function of the viscosity ratio a; i.e., the

smaller this ratio the larger the diameter ratio at which the theory deviates from the experi:-
mental results. Although tho largest a used was 200, it is not believed that the deformation

of bodies with a -, would be much more severe. It is further noticed from Figure 10 that the

wall correction factor is not too sensitive to deformation from the spherical shape. A differ-

ence in the ales of the drops of up to about 15 percent occurred without noticeably affecting

the wall correction factor.

35



B. MOTK)N IN A MOVING LIQUID

The preceding sections hve dealt with the steady, axial translaton of rigid and fluid

spheres in a stationary, viscous, incompressible fluid bounded by an infinitely long cylinder.

The solutions are now extended to include the case in which the fluid contained within the

cylinder is also in motion; i.e., a parabolic velocity distribution (Poiseuile flow) exists at

infinity. As before, two problems are considered; the first deals with the motion of rigid

spheres, the second with fluid spheres. The method of solution is the same as before; the

only difference arises from the changed bounidary conditions at infinity.

An exact and approximate solution is given for the drag of moving rigid spheres in a

moving, liquid. The approximate solution is shown to be valid for diameter ratios up to about

0.6. An approximate solution is given for fluid spheres and is estimated to be valid for diam-

eter ratios up to about 0.5. It is shown that the drag of a sphere in motion within a moving

liquid is composed of two parts: namely, the drag due to the motion of the sphere in a still

liquid, and the drag due tW the motion of the liquid within the cylindrical tube past a station-

ary sphere. Values of wall correction factors have thus been computed for the two special

cases. The drag of moving spheres within a moving liquid can be obtained by appopniate

combination of these two correction factors.

1. Rigid Spheres

a. Exact Solution. The problem considered here is that of a rigid sphere moving within

a fixed circular cylinder containing a fluid having a parabolic velocity distribution at infinity.

For convenience, t is desired to take the coordinate system fixed with respect to the sphere.

Thus an equivalent system, as indicated in Figure 11, is used. The coordinate origin is again

taken at the center of the sphere, and the cylinder is assumed to be moving at constant veloc-

ity U in the negative t-direction. The boundary conditions are:

at the cylinder walls ( pXb): X -U; P in- or 2 4

at tinfinity (z -+ a): V. - U + V  'V- Mr 0pi [6]

on the sirface ofthe sphere (r R): v , 0; vo 0

After satisfying the boundary conditions on the cylinder a, the steam function becomes

(similar to Equation (45)

I 4(Z IPA A(ap)f 1 (a)+P 2 K
0 (ap)F1 (a)+p1 (ap)[S1 4(a) +SsF3 (a)1+

fo V 771
+ P2t (p s2 a + 54 , W]! coo . d + - - + ----

(422

i
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Figure 11 - Definition Sketch

As before, the stream function V is now'rewritten as
tr12 360,n

Y=cz C3a . - 5*134 S 6

- 2  S 4 (a4 a2 +a 3 +...) da + (S3 a + 2S4) (b0 + b2 a2 +. )da + (U-V)

210
00

e .. )(s 3a+2 4)(bO a 2+b 2 a4 + .do1
±APAR °  Lm (s2! j4 + a (+a")da-- .. a+J ..u 4 o~0

+ p _(3Ss2 - .- a) ('1 W" +a- a" +.. ) +  S3" a4 6 S)(bD a2 +

+ b2 a4 + .. )d 6 $ +

3$7



Again, comparison with the solution for It in spherical coordinates (Equation [52]) results in

the following relationships between the constants A, B o, 0,, and -o, b:
2

Ib + - b2  B4 -- (12a 3 + 16

12
02 =bO , D -- b V;''"

24 2 *

A3  XS  X

A -6,55507 - a -15.3046 -- a3 -...- 4.40866- b -4.76318 3b 2 - + (U-V)
2 ft R 02

AS x7  X3  ks  2 V [79]
02 3.57466 - a1 -+ 1.2.1172 - a+.. + 1.31101 - b

o +3.06092 +. . -

fs f 7  R3  b2

Asx7x 2 V
a3+..+1.00'T5 ± .97- b+.-

A 4 - 4.07765- a + 54.7950 - a3 4. + 1.073056 - bo  11.922 -R. 35 P2

etc.

As previously (Equation [55])

2n +n -l 1
An B1 - 2

R2x-I 2 .x f2x- 3

[551

2n -1 1 2n -3 1
- B,, + P
2 2 ' R-

Substituting the expressions for A., B,,, C, 0 as given in Equation [79] into [55], the infinite

set for the determination of the constants a, a 3 , ... and b0, b2 .... is obtained

from A'

i w-4.40866 A) 3 1 (-4.76313Aks)+ ... 2! (v 6.55507 A3 + - (-15.3046A)+... -U+V

from A2:

R - 1o ( 3tr-1s.3044A )+...-( ,-17.73 A + )

from. A. [80]b3) 2 42 AS) +. a9 -. l753 v5.a0 7 ±..--

- Rs  5

aS



from C4:[0

4M06 + 6 w 1 -(.369X)+3.3659 X) + (42, - 3T. 5381 +9  -. 0
RR3R R

etc.

As in the case or the motion of a sphere in, a still liquid, a wall correction. factor could be
d-efi-ned b-sed- on tthe- drag i-n an- infinite- medium [i.e-., 06WMR(.U - V)). However, -the wall
Correction factor th-us obtained would be a runction of the diameter ratio A and the velocity
ratio U/V. It is more convenient to define a correction factor which ii, a function of X only.

The coefficient b0 as obtained from E~quations (80-1 can be wiiten (utilizing properties

of determinants) as:

0o 01 - N2

w here 6 is determined from System 1. and b02 from System 2

System 1 System 2

6( 6 55 73)b+.-50. +- VX
- -(6.55507X5+MO )± . . ' - A0* (-1005A )..=
Rf 5

etc. etc.

As given previously, the drag experienced by a sphere is;

Drag * A 60[68)

wherr the drag is taken positive in the negative zwdirectiot as indicated'in Figure 11. We

now define two wall correction factors K, and K2 such that

4 v2 ,4bdI0  2w [60)

OvoiUft 3 UR

K2  . - I~112

GVI . -



TABLE 2

Wall Correction Factors (K2) for Fixed Rigid Spheres in Poiseuile Flow

Approximate Theory
> Exact Theory (Equation [16]) Percent Difference

0.0 1.000 1.000 0.00

0.1 1.255 1.255 0.00
0.2 1.635 1.635 0.00
0.3 2.231 2.231 0.00

0.4 3.218 3.218 0.00
0.5 5.004 4.973 - 0.83

0.6 8.651 8.377 - 3.17

0.7 17.671 15.6&6 -11.25

0.8 47.301 33.056 j -30.1

hence

[Drag-6w&R (UKI - VK 2

Thus the drag of a sphere in motion within a
,oo . . moving liquid is composed of two parts: (1)
n ... the drag due to the motion of the sphere with

Exact ! lwory.velocity U in a still liquid, and (2) the drag

40 F. .due to the sphere held fixed within a moving

I*pr- - . liquid having a parabolic velocity distribution
AM- % j (maximum velocity V) at infinity.

I I ' E.lct The coefficients b0 have been deter-

mined in u peevious section from Equations
.F_.- [56]. The coefficients b02 were determined

S ! I/ numerically from System 2, Equation [81], in

I /the same manner as b over a range of diani-
41 j-{- { etmr ratios X. The computed wall correction

I J factors KA1 (for rigid spheres froving in a stillt 7liquid inside an infinitely long cylinder) were

111 shown in. Table 1. Table 2 gives the compwwel

wall correction factors K2 (for fixed rigid
0 02 0.4 , o-pheus within Poiseville flow). Both wall

correction factors are shown in Figure 12.

Figure 12 - Wall Correction Fact.. s for The stre m fvntion in spherical cool
Rigid Spheres within a Cylinder dinates for flow about a o V rigid sphere
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4

im Poiseuile low is gien by Equation 139] with coefficients AM., C., D as tro4rmIned

-from Equation [79] (with coefficients a and 6,.. evaluated from Equations 1801 or

b. Approximete Solution. Again, an approximate solution for the rigid spheres can be

obtained by retaining only the coefficients bo and a1 . From Equation [801 we obt tLn

(U-V) (1- 0.75857 k5) + V A.2  0,5640 s )

R 2w 1-2.1050 A +2.065 A3 
- 17068 As+0.72603 x6

The drag of the movziig rigid, spheres in a moving liquid becomes

(U-V) (1-0.75857 X5)+V A A 2 -0.55640 )

D r a g - 6 p R .. ..

1-2.1050 X+'2.0885 X3 -1.7068 A5s +0.T2603 A6

Using definitions of K1 and K2 (Fquations [601 ind (821), we obtain

I 0.55 2As5 A1 621

_L. ~~ ~~~~ -2 .1050- X + 2.0 N5 A3 - 1:.7068s ks .+ 0.-zo 72. ,X6 -s12 X
l--A2 0.20217 XS

1-210 + A2.0A65 A3 
-L +.'.O68 A,

Wall correction factors as obtained from Equations (62] and [861 are shown in Figure 12 and

Tables 1 and 2. Previous theoretical results by Happel and Byrne 6 and Wakiya 5 (presented

in terms of K2 ) are also included in Figure 12.

It is seen from the tables that the approximate expressions for K1 and K2 agree well

with the exact solution up to diameter ratios of 0.6. However, for certain combinations of

UK1 - VK 2 (e.g., UiV - 3/4), the range of good agreement will decrease to diameter ratios of

about 0.5.

The approximate solution for the stream function in spherical coordinates. for flow about

a moving rigid sphere in Poiseuille flow is given by Equation [61 with coefficien.s, A,,

0. as follow-s:

*O MP ,-pso " *,,'Is $01.O -:6  (U--V) + V _ -A?

-~ 6 -.............M.A

5 2

3
Ia1yi -..11 2.0 k fOOA -1
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B.2 a a 9B "

A -- 4.4eN---46.5&5O7-i+-

b ai

C2 m 1.81101_0 A3 +3.57466- XS

A 4 LWW - A+ 4.07765- xS
R 3  RS5  5 b

so ,mas In Emotion (681

Au

2. Fluid Splwres

For fluid bodies- moving within Poiseuijlle flow, the saina type of approximation is

utilized as for the motion of a fflid xsphere in a still liquid. As before, tKa origin of the coor-

linate system is taken a0 the center of the fluid body, Th.e boundary conditions are:

at the cylinder walls (pm Y): -U;-

2

at infinity (2mm) - ! U + V(I -L) b2 O

at the surface of the flid body: [~

Equality of tangential velocities

Normal velocities vanish (i.e., no diffusion)

-Equality of tangential and normal forces.

Again. assuming a resultant spherical shape for the fluid body, we obtain, as before, fromn the

bovndwiy conditions on the sphere
9

1 1 3 1
A B-2- -- 0w a2 22 2~R3 IO f -o 2 R;I - 2

C3 1 12 +1D
1 it W -2 RI 1 -1
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Substituting expressions for A 2 , C2 , C , and 02 (as givon in Equatio, [eli) iual Eqtst w 'T
two algebraic equations for b and aI are obtained

&~ 1--c

o(A L 44086A) ++(---
.22

-6.55507 - - ,-
-I- R 2  1-

From the above equations ho and a1 become

+o (U 1-0.755 V,3 1 o1 +4/80 "lk

R 2 I+a I +2A , 1-2/3 X6
I11060 --- A + 2.0865 - A3 1.7068 - I , 4x 6 )-14-al+a ~ l+oI ,] +0

:. a 1 __(U - I') [ 1- .- 462 ( I- ) x']  + A 1. 12266 (G- .) ,C] M

23 1+ - . ..- _ - -+008 1, + A1 +107260 - 6
.1050- / ' A+2.0865 -3l~u l+o 1+o I+a

The drag of the moving fluid spheres in a moving liquid then iecomes

1+ 2o (U-V) 1-0.7T5857 AS)+ 4 2- A2 0 .5M0L - AS
S1+2/8o, \ S -2/3v 1+/c /-

1+0 1+2/80 1. 3 2/8a1- X~SO7GO±~.61-2.1050 -+ 2,065 - A-1.7068 , +
1+or 1+o 1+o 1+o

Defining

4W2 Jtbol 2W 1+0 boi
K1 " - I+2/So -2 +t8 [8

6wUR 1+o 8
-"d

412,li &o2 2wr 1+. bo2
4 2

U-tll. - i3K2 6 T#lR+V3 r 3 2 rV
1+0 3

the wall cowection factors K and K2 become
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Figure 13 - Wall Correction Factors K, Figure i - Wall Correction Factors K2
for Spheres withi :& Cylinder fo2pee ihnaClne

I fr pheeswitina1Clide

1.-0.75851

A- 1+2/3a ±2S 1-2/3a 1-0 [75]
1-2.1050 - A +2.0865 A- - 1.7068 X3 +0720 6

1+0- I+a so 1+a~

2 1 A2 -0.20211 A

2 1 +2/3o 1-2/3v -
1-2.1050 --- A + 2.0065 - X3 1. 7068 + 0.72603 -k

6

+01+0 l±(T 1+a

The wall correction. factors Kt and AK2 (as obtained from E~quations [751 and [941) ite given as

a function of the diameter ratio in Figures 13 and 14 for throe -viscosity ration (or -0 [rigid

easel, 1, and 9*). The above 9olULIOnS for the Wall cowectOs faCtorg fOr the fluid spheres are

e~Lt 1ated to be valid for diame'ter ratios up to 0.5.

Tho express~ion for the exterior strieam function for fluid spheres in Poiseville flow is
gie yEuto 181wtic~fiinsb n 1 determined from Equation (691. The stream

(v~ctioo in the interior region is *i on by Ec~ustion (731 (with coefficients as given in Equation

[671 and deoterwpiied kom Fqvatioui (801)-
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TERMINAL VELOCITIES OF SPHERES

In many applications it is of interest -to determine the terminal velocity (U) of rising or
fslln~ shers. Sch ae~oity nesl edtrie firom the rosults of the present in.

vestigation. A body rising or failing under the influence of gravity reaches such a veloc ity

(termifttl velocity) when all (orcps acting. on it are in equilibrium:

Drag + -Buoyant, Force + Weigjht, 0-

,or 2

6 *$? 3F----(UKY- K 2)w 3 Y'9+ WP? yigmO
1 2 . 3

whore y is the den-sity of l iquid and y8 i,,, the density of sphere; hence

22 g~ ((Y - y5) +

9 +' 6wU
3

(or ae-0V and iur 1 oriabe. The2--

spioe moving appeai infuin [91eadium,--z~ z
tsevldfrmEquations[5ad (941; -eue to- Stokes law namel0

2 g___ (Y.564 1-2' 0.62/S

The ratiof th appris ite n i Figurectorangeddaee aisAfrvsoiy to
0,1,act- or -hisi as a0,t. ai 2 K obtained from Figue e5 orolableoI

iur 10s jandeFgrd. rTal . h

uzl o K 2 I I pp e rin i E q #Ai n 971 h as 45



SUMA:RY

T-be steady, slow mtion of rigid and fluid sphers troaslating along the atxi- of an in.
finitely long cyliador has be".~~~uid The solutions ar* given. in toerm of the stream (unc-

tion. An. exact aolvtion fr the motion of rigid spheres is obtained in trmew of an infintite set
of linear algebraic equations tot the -coefficients in the stream fiunctiot. The drag of a sphere

in motion within a moving liquid is shown to be composed of- two parts: namely, the drag due
to the moti-on of th-e sphere in- AMil liquid inside -the cylindrical- Lube-, and- the drag de to

the m.rtik of the liquid inside the cylindrical tube past. a stationary -sphere:

Drag -SwgaR(UK1 - VA'

The drag experienced by rigid spheres ha's been determined for the two special cases over a
range of ratios of sphere-to-cylindec diameter. A very good approximation for the drag of the
rigid spheres is obtained by utilizing the first two equations of the infinite set. ?'or fluid,

spheres, an approximate salution (similar to the rigid case) has been obtained.
The n~roximate oxpressions for the wall correction factors for the spheres in a cylin-

driesl tube take the form.

0.75857 As
Kj 1+2/30

z1+2/3 ~ 1-3S6
1-2.1050 A + 2.O A01.M+ .2M _

1-- 0.0217 A'
A' 2=8 1+2/80 1+2/836

1-2.1060 X .85- MA +O.720M - X6
101+6 1+0 1+0

Exporimental resuz. for the rigid and fluid cases confirmn the -theory. In general, the
results show that the wall effect fo? the fluid spheres is loe tham for corresposding rigid
spheres.

FUTURE IMESIGATIOI4

Since the experimental investigation showed that flid bodies deform into apheroids
(ellipsoids of revolutioe), work Is currently in pri~res to obta a solution. for the strean
niction in spheroidal coordinates. It is hoped thiL an exact soltioa for fluid bodies might

be obtained in this fashion, or it might~ at least improe the pres --t apprximat, solution for
lIrme diameter ratios.
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APPENDIX A

GEGENBAUER POLYNOMIALS C -  )

The Gegenbauer polynomials C"' (t) w-hich apper in the solution for the stream function
m

in spherical coordinates can be evaluated by making use of their relationship to the Legendre

polynomials (Reference 25, page -7)" .

C () - - [P.--2 ()- Px (t) 1

where P (t) is the Legendre polynomial ,of degree n,. and

t =f-cos6.

C .- t

_C ( t2)

2 2

C t2) tc3-.
2

c; ~~ ~ = -It ) (5t -]41

:c-% I (1 -t 2 ) (-T5t 2 -) t
.8

C -% --m- (1 - t2) (21 t4 -14 t2 + 1)
6 16

C% ,W (I - t2) (3314 _So t2 + - t
7 16

1 ( - t2) (429 $ lO5t 4 + 135 t 2 -S)

- = - (,t_)(24tt t t4- p"_g2 + 7)

t0 .256

etc.

4

*lPm B- 0, 1, tl P.1eI3~S1 S w@WS .ve1( fuor,- :h epeaios £'~ |. p 71, ltmmo 25.



d2 C()
______ In-)

dt2 2~

dn- C

d~t)

as



APPENDIX B

EYALUATION OF INTEGRALS CONTAINING KO (p) AND K1 (o)

The integrals containing K0 (ap) were evaluated by successive differentiation witd ro-

spect to z, starting with the known integral (Reference 25, pMge 33)

K K(aP) cos adm~
0

Hence

0 2

2
12 2 Cooo 0 C - - ,-(),* p Ko a si n aj,,. -a sin co 0- r . ()

p2  a2 coazda2- -1sin 0-3 cos 2 0+l)- - 7)f

r -- 4

i~ ~ KOa o si ax da - . sin21l'1 (!289 4-1,9 +1,9)o

2 r
sin ax CO da 81 81- -1500e( 1O v O OS - 0 o0 .2 2

f 0a M2 (0 W sin - - sin -(_45 lOWo2 0+.9)
fo 2 7

2  s2 0 (95 o 6 61,- C9 6-045 CO 2 2+ 1,)

Jo 2f 2 K a75ef awds - - rn 2 0(_ 10136 co 6 +1, 5 OW 4 -W,225 c0 2 +12)co6

fo 2 fS

p 2 o S awda 2 - 5.2 0(_ 02?,02S Coe6 0 + 218,95 co 0"v 6+2,12Oos 6-1vM)Oo

10 51



The integralA containing K1 (ap) were ev.iustod by successive f ith re-

spect to x, starting with the known integral26

(ap) sin oda -

Hence

w: 2 - " (1) (

p', a coo azda s -in2 0 -
fo 12r f

JPK, a sinada sin2 0 3cosa0Ct)

K, a3co s ar,da ~ -sin6 15 Cog' +3)m--.~t
23 74

00 41 . 0(_05co20+5)co8W_600

JpKG asnamda -- sin2 (4cs ~ tS 2 0 (956 cos+45) 6

J K-, a6 sin ax da o I Sin2 0 (10895 COS4 6- 9450 cos 2 +_945)_cos 6

J .Ki a6  (104895co1

K aCoeazda --- sin 2 0 (- 1353185 cos 6cos 2 +945)
Jo 2) 7

fsinazda - sin 2 0 6 -654,885 cos 2 6+

+84,105) cop 0

etc.

Another group of integrals is derivable from

+ FI +-cos6Ko (ap) sin a do in --- t a:, - O

and

K, ,aim+ - sinL t I + Cos 1 I

10r3 P pP2 ?(Z + ) 1 --cooe0 Bill



These integrals, ,e-weve', result in i velocities for p0;hence the ingra

f*Ko (ap) 5 coso de r(where n -d), Ko (ap) " sin az d (where vt even),

S.K1 (ap) .a cos ax da (where t even), aid f" K (ap) a4 sin a:zda !(where n odd)-cazu o-
0 0

be used in Ahe present problem. These integrals correspond to '(t)-terms in the spherical

coordinate solution.

I

I

5

N'



APPENDIX C

NUMERICAL EVALUATION OF INTEGRALS SAND 8:

The integral-s _S "nd S' defin-ed AS

1f -2 (ab)-(b) 2 ()da)

s: ~~ (to) 1, ab 1) 1 (6)12(K .6

were evaluated using Simpson's -rule. hicrements of 0. 1 in the rgan wtor*~ -u*V k
range 0 to 3; for largor values inrm8so0. er sd h fL'a esel tun-.3J-0s

were obtained from leference 27.

The S1 + 2 SO had to be evaluated in the combined form; aaiuey,
3 4

21 A"1 + 120K) d)

0 1 0 2

The saeicemnsa above were used.. The rtnge 0 to 0.1 wi, - V eA*sk ~ te ml

value -approximation of
01. 1

I2 y+2 10In 2 -2 In (ab)1 d (4i4

0

where y Euler's constant (0.577215665 ... )
As cecko~-he computations the integral S 3 + 2 S0 was alpn evamnted i" the combined[

As ceck n t3 4 ef
form.

The evaluated Integrals ame tabulated in Table 8.



TABLE s

Val, s of the Integls S , s:', "d + 2St 1

0 ... 440866

2 17.87328 6.55507 - 4.76313

4 60.5861 15.3046 - 29.9769

6 675.6858 133.8245 - 408.0368

8 137.7658 x 102 226.4366x 10 -924.7838 10

10 431.9631x 10 .0951x 102 -310.1441x 103

12 191.2120 x IOs  235.5-148 x 104  -144.1090 x 1OS

14 112.1989 x 107 123.3180 x 106 - 75.3.34 x 106

5,



APPENDIX D

EVALUATION OF THE DRAG -OF SPHERES FROM THE STREAM1 FUNCTION

The drag, of the spheres is to be evaluated by integrating the fa.-es on the surface of
the sphere in the a-direction

D D,9+ D [D-11

where D) is the drag,

Do~ is the tangential drag, and

-Dr is thenormal drag.

Fromn Figuro 16 these components are: P

14 - p,~com 0 dS

where dS -surface element 2 vA 2 Sin 0 dO.
4 Hence.

rl 2R 2W2 fPe tq_ do
0

4W

Dr-2R2 * P 6icos 6d0
Figure 16 -Stress Components on Surface

0 of Sphere

From Referenee 18, page 874:

pro-- + Tangential stress [D-41

,,, -p 2gaNormal stress ID -61

Utizing the expressions for the velocity components (Equations (18], the tangential stress
beemes:

?-3 5 + 9(%2.1) 8, +_2(ft2 1) /'+

± - p+2 W41

+ 2Wit-2) D*



Since C- (1/2 n 1) (Ps- 2  PA) the taTugential drag becomes

-o . ,) ,
o2R2, # (p2 :2) I 3R n- + (n2_- +

f~ . 2,'1+2
0 2 R[l7

2+ (n2-)C ~ - +n(n-2) D,.. sin OdO

From Reference 25, page 52

f F(cos0) sin0d0=-2 form=0

0

M 0 otherwise;

herce

oo  S R2 2 + C2)

In order to evaluate the normal stress conponent (p.). the pressure (v) must first be obtained

from the equatiot of motion. From Reforence 18, page 3T3, we have for slow flow:

-- , _' Vr  cot0 v0  2 aOV

P2 2 22 d

1 ap 2 V6  2 vr
- =- . -. + -[D-10
Pao F2 s7in20 F2 a0

2 02 2 a cot 0 ) 1 a2

where 7 -+--+ -- + --.
aF2 r a? P2 a0 r2 ao2

0 + 1 0+v + cot 0

. 6- + 2 + 0 Equation of Continuity ID-I1]Or aO r r

Hence

- - I - ++o vr cott 0 D2

and

1,, A (

-,-" v + + ,5, + :..j



Hence from Equation 1)

-- 2 ( n
P3 1 . -2(2n4+ l) G 2(2n-.3) ! -ID-i41

Integraling

.F 2(2.n + 1)-v-.-~ 0e_ [ ]- .o eD-15.1

2 
A

Integrating the equation containing t e parti-al derivative of -P with respect to 0) we obtainr

> p- -2--- (2 - 1'; 2,(24t-)

2

hence f(r)=f( 0) -0 > 2.

Therefore

P IL -{2(n-2) A 5 -I + 2(n+1) B - C -(1;)I +

2

_+ c, - +=, 2-n-)

From Reference 25, page 52,

rP sin 20df-0 forsr>_? or m even

form < 2and m odd.

The normal drag becomes.
U .- 4R2.W# ,  4 + 90- 2R + D l-

2 -[ -.2 2

Adding the two drag components we obtain for the drag of a sphere moving in a medium:

I a-4,02 [l )

The swse result ha beem obtained by Sovic2 ° for the case A. a C. - 0.

So



APPENDIX E

MOTION OF SPHERES IN A SPHERICAL CONTAINER

The motion of-a sphere. at the instant At passes the center of a sphericalcntie

(neglecti-ng unsteady effects)isa of interest as guide and upper bound for the motion within a

cylindrical container, since the wall. effects forw corresponding spherical i4oundaries exceed-

those- -for -cylindrical -ones.*

The origin of the coordinates is taken at the center of the sphere, and the conta-iner

is assumed to be moving, at constant velocity V in the negative z-direction, as i-ndicated in.

Figure 17. The boundary conditions for the sphere have been -given in a previous section.

The boundary conditions at the container walls (r P) are:

vu-U coso or If 2in 1

'V Us$inO0

From Equations IF.11), 139), and [671 we obtain:

A" -- + C p+ 2 +D -) M 
E.2)-2'

PAs- 1  Pa- 3 [E2

1 U

SOWer Passing Ceoter of sphterical Container aqsivaieat system Some re spherical

W11%. Velz'ity U Containe Moving Wit V elocity U

Figure 17 - Definition Sketch for Sphore in Sphenrical Conitainer

Mhe CM Sep niog tw..dimesfowt pooblom f W:4 rieid cylinerh beWW -sted by Frazer (Retvence 2S).
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SolvinR for A, B, C D, E, tid- F, we obtain

1 +o +!,-3 - " ) .

1 ~~ 2-(2~r)

A U2

2, + I ... . .
+o- + - 2 + -o

As -(,a) AAA

2 2

B 3

+ A+ 5 A53 13

2 2 2 2 2 2 (E-x J
12 =- -

21+ -- 0 0-) k

+ a- 3 ..... a) X+-! _ I )XS6

,J ~ 2 2 1 2E

2= - 2 - + W1 o)

+ 2(-22~ -(2 -+2  + (I-a X

+ As
U 12 2

whee 2 2 ieR2 in3uto E

A -B 4-0 =D -E -F h n >

The streamn function in the exterior of the sphere thus takes :the form

'1 2A o + C2 .F + B2 + D2P)[E4

where AV, B2 1" and 1). are gie bve, whereas the stream funto Inheitro

becomes:

2, [E R2 [-t

where K2 is givent in Equation [E-3].
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For an infinite medium D 3 Y 1 + 12 wall owctio Nator

for rotion in a spherical container becomes

9 1+-2/a 5 1 A3 S 1-0
- + +X

4 1+a 9 1+0 4 1+a 1+0

For a rigid srhere (o 0 0) the above equation reduces to:
l -

9 5 9
.. + _ 3 _ As + E6

4 2 4

For a fltuid sphere of vanishing viscosity (I t - 0 or a

I +-

1- ) + -

2 2
For a fluid sphere with viscosity e.qu. il to that of the internal medium (a- I):

15 33 -3x(E9:rI - .A -

8 4 8

The wall correction factors for these three cases are shown as a function of A in Table 4 and

Figure 18.

TABLE 4 - Wall Correction Factors for Spheres Moving in. a Spherical Container

R ilid Fluid Sphetes
Spheres i o

0.0 A,000 1.000 1.000

0.1 1.286 1.229 1.176

0.2 1.756 1.575 1.428

0.3 2.573 2.126 1815

0.4 4.106 3.066 2.469

0.5 7.294 4.831 3.22

0.6 14.948 8.636 6569

0.7 37.3 H81 14.826

0.8 138.224 58.480 50.773

0.9 1209.778 431.779 439.156

Thi,. *qDUIO a g with &MaIt of CUuuiuga 7 MId Loeg eacet Ott CIa --o a -
6 tc;

this ampmar to be a prating en.
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